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Abstract

A signal processing method is presented for correcting imbalances in the
phase-detection channels of a coherent, wideband radar. The technique, an
expansion of an earlier method, derives phase and gain corrections using an
external point target illuminated by a wideband waveform. The technique
does not depend upon the target or the phase and gain flatness of the radar
waveform. Errors remaining after application of this technique depend on
the signal-to-noise ratio  and the correlation of the sampling with the radar
waveform.
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1. Introduction
Inverse synthetic aperture radars (ISARs) transmit a wideband waveform
to derive range information. Most systems use a linear or stepped fre-
quency modulated waveform, generated either analog or digitally, that
may be processed with a fast Fourier transform (FFT) to produce a high-
resolution range profile.1 To obtain such a profile, the system must relate
the returned signal measured by the radar to the transmitted signal or to
an internal reference signal in a known fashion. While this comparison
may be made in a wideband phase-comparison receiver, we concentrate
here on using a narrow-band phase-detector system. In this class of sys-
tem, the received signal is down-converted into a narrow bandwidth by
the received, coherent signal being separated into two channels, which are
then mixed with two orthogonal local oscillator (LO) signals. Typically,
calibration techniques for these systems determine the individual error
sources through a series of internal and external means; this report de-
scribes a technique that uses only an external point target. This technique
is an improvement of the method presented by Churchill et al,2 in that cali-
bration may be obtained from an external target of opportunity, eliminat-
ing the need for internal calibration hardware.

For this work, we developed a signal model based on certain assumptions
that we present here. This model is the basis for our technique for deriving
the correction coefficients, which we describe along with its limitations.
We identify two error sources associated with this calibration technique,
and discuss how to prevent these errors. Finally, we conclude that our
method offers improved performance over the earlier method,2 in terms of
practical considerations not discussed by Churchill et al.2

2. Derivation of Correction Coefficients

2.1 Description of Calibration Technique

Figure 1 is a diagram of the phase-detector system, showing the following
inputs/outputs: the received, intermediate frequency (IF) signal, the LO,
and the resultant in-phase (I) and quadrature phase (Q) signals. The result-
ant signals I and Q define the real and imaginary parts of the received sig-
nal before digitization.

This portrayal of the detection process suggests that the signal received is
modified only by the target of interest. In reality, the signal is modified by
the radar on transmission and reception, because of imperfections in the
system’s components. Figure 1 includes circuit elements representing these
imperfections, including the following.

1D. L. Mensa, High Resolution Radar Cross-Section Imaging, Artech House (1991), chapter 4.
2F. E. Churchill, G. W. Ogar, and B. J. Thompson, “The correction of I and Q errors in a coherent processor,” IEEE
Trans. Aerosp. Electron. Syst. AES-17, 131–137 (January 1981).
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• The 90° hybrid may actually shift the LO 90° ± δ ␣ °, where δ is a differential
phase.

• The mixers have dc offsets represented as a voltage source referenced to
ground.

• The gain throughout the phase-detector system is different for the I and Q
channels; these different gains are represented by Gi 

and Gq.

For simplicity, the gain and phase imperfections are represented as occur-
ring in the Q channel only, which results in no loss in generality.

If the radar and phase detector were perfect, the measured outputs from
the I and Q channels (for a point target) would be represented by two 1 × N
row vectors,

    
I fN = A cos φ ( f1) ... A cos φ ( fn) ... A cos φ ( fN) ,

(1)

    
Q fN = A sin φ ( f1) ... A sin φ ( fn) ... A sin φ ( fN) ,

where f = [ ␣ f1 ... fn ... fN] represents the N frequency steps of a pulse-
compression system, φ(␣ fn) represents the relative phase between the I and
Q channels (which is linearly dependent on frequency), N is the number of
frequency steps in the pulsed stepped waveform, and A is the amplitude of
the received signal. Equations (1) describe the ideal form of the received
signal that we would like to measure. However, the measured signal is that
signal actually produced by the radar phase detector and includes the ef-
fects of each of the imperfections diagrammed in figure 1.

In addition to these errors, there are corruptions due to imperfections in
the transmitted waveform and in the wideband receiver, and there are ef-
fects due to targets that are not purely point-like. Because these imperfec-
tions are introduced before the signal reaches the phase detector, each
channel is affected equally in both amplitude and phase, and the imperfec-

Figure 1. Generalized
narrow-band phase-
detector system. LO 0°

90° ±δ°

Vdcq

IF

– +
I

Q

90° hybrid

Gq

Vdci
– + Gi A/D

A/D
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tions are resolved by other radar calibration processing steps not ad-
dressed in this report.

In a real, imperfect radar and phase detector, the imperfections in figure 1
would result in a measured signal containing errors. The effect of these er-
rors on the nth element of the 1 × N row vectors of equation (1) is repre-
sented by

    Im ( fn) = A cos φ ( fn) + Vdci   ,
(2)

                Qm( fn) = GA sin φ ( fn) + δ + Vdcq  ,

where Im(   fn) and Qm(  fn) are the measured I and Q signals of the nth fre-
quency step of the pulse, G represents the gain imbalance in the phase-
detector channels (assumed to be positive and real), δ represents the phase
imbalance introduced by the imperfect 90° hybrid, and Vdci and Vdcq are
the dc offsets in each channel. If we assume that the target of opportunity
from which we would like to measure our calibration is a point target, we
need only one measurement to correct for all errors except for dc compo-
nents. This assumption is reasonable provided our target falls within one
range cell. By algebraic manipulation of equations (2), we can represent the
elements of equations (1) in terms of measured and derived parameters:

   I( fn) = Im( fn) – Vdci   ,
(3)

                        
    Q( fn) =

Qm( fn) – Vdcq

G cos δ – I( fn) tan δ   .

Vdci and Vdcq are the means of each channel and may be determined
directly.

Now only the values G and δ require determination; our proposed process
determines the best values for these variables. Best values are defined as
those values that scale and orthogonalize Qm(␣ fN) and Im( ␣ fN). When
Qm( fN) and Im( fN) are orthogonal, the FFT of a point target has a single
peak at the appropriate range bin and no output at the image range bin.3
Hence, a technique for making equations (2) orthogonal uses the FFT as a
narrowband filter. Because we are using signals from point sources, the
range bin of the peak value of the FFT of the Qm( fN) and Im( fN) is used to
determine the correction factors. The coefficient of the peak-magnitude
value of the FFT is a complex number that represents the amplitude and
phase of the signal, passed through the narrow bandpass of the range bin
in which it is found. If both the I and Q values are passed through the same
bandpass filter separately, we can directly compare the gain and phase to
determine the appropriate correction factors. (Note that if the frequency
corresponding to the target response is known a priori, an FFT is not re-
quired, since the Churchill et al method2 would suffice.)

2F. E. Churchill, G. W. Ogar, and B. J. Thompson, “The correction of I and Q errors in a coherent processor,” IEEE
Trans. Aerosp. Electron. Syst. AES-17, 131–137 (January 1981).
3Merril Skolnik, Radar Handbook, 2nd edition, McGraw-Hill Inc. (1990), p 3.41.
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To determine the gain and phase imbalances G and δ, we must find the lo-
cation of the peak magnitude in the complex FFT of the Qm( fN) and Im( fN)
data. This first FFT is used to identify the location of the true response (as
already noted, the true response is larger than the image response). We
then compute complex FFT’s of the I and Q vectors individually; that is,
we form the complex vectors (Im( fN),0) and (Qm( fN),0) to determine the
amplitudes and phases of the coefficients at the true-response frequency.
These are given by

    
F Im( f ), 0 = A cos φ( fn) exp

j2πkn
N = IΣ

n = 0

N – 1

(k)   , (4)

         
    

F Qm ( f ), 0 = GA sin φ ( f n) + δ exp
j2πkn

N = Q(k)Σ
n = 0

N – 1

  , (5)

where I(k) and Q(k) are the K complex outputs of the FFT, K = 1 ... k ... N.

The results of equations (4) and (5) provide the location of the peak re-
sponses, Q(k)|max and I(k)|max, where k is the kth range cell, rk, of the
range profile:

  
   

Q(k)
peak

?

= AG cos rk + δ + j sin rk + δ = AGej(rk + δ)   , (6)

                   
  I(k)

peak
= A cos rk + j sin rk = Aej(rk)   .  (7)

The gain imbalance is related to the ratio of the power Pi and Pq, at this lo-
cation, since

   Q(k)
I(k)

= G (cos δ + j sin δ)  (8)

so that

  Pq

Pi
=

Q(k)

I(k)

2

= G2
  .  (9)

Therefore,

 
G =

Pq
Pi

 .  (10)

The phase correction is found through the use of the following unambigu-
ous trigonometric identity (π is added to shift the range of values from the
principal branch to 0 – 2π):

   δ = π + 2 arc tan sin δ
1 + cos δ   . (11)
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By substituting the real and imaginary parts of equation (8), we get

   

δ = π + 2 arc tan
Im

Q(k)
I(k)

G + Re
Q(k)
I(k)

  . (12)

Therefore, after the dc biases are removed from the I and Q signal compo-
nents by subtraction of the associated averages, we need only three FFT’s
of a single data set taken from an arbitrary target to determine the phase
and gain corrections: one FFT to locate the peak signal from the complex
pair (I, Q), and two more to produce the correction factors—one each for
the real (I, 0) and imaginary (Q, 0) correction factors.

One limitation to this technique is the possibility that the peak may occur
at the center or either end of the FFT. In any of these positions, the image of
the peak will be superposed with the peak, contaminating the gain and
phase measurements. Additionally, the incremental phase change at these
locations is zero, providing no information for calibration.

2.2 Example of Calibration Technique Using Simulated
Data

We generated each of the plots in figures 2 to 8 from data to which a Ham-
ming window was applied. Figure 2 shows simulated data from a point
target that has a response centered in the 110th range cell of the range pro-
file. The error values used in the model are as follows: Vdci =
–0.9 V; Vdcq = 1.1 V; G = 1.5 V; δ = –3.5°; and signal to noise ratio (SNR) = 40
dB. Figure 3 shows the complex 512-point FFT of the simulated I and Q
data, which is defined in equation (13). We generated these data using

Figure 2. Simulated I
and Q response to a
point target.



6

equation (2). In figures 3 and 4, the ordinate axis is the absolute value of
the complex FFT of the measured data, represented by

 

   

Y = abs cfft Im ( fn) + iQm ( fn) + ng = abs cfft Sm( f n)   . (13)

Here, abs means “the absolute value of,” cfft means “complex FFT,” ng rep-
resents a complex N-vector of white Gaussian noise, and Sm represents the
entire measured signal.

To correct these data, we removed the dc offsets by subtracting the mean of
the I and Q values, before correcting for the gain and phase imbalances, as
described in the previous section. Figure 4 shows the complex FFT of the

Range (range cells)

Figure 4. FFT of
corrected I and Q
response to a simulated
point target.

Figure 3. FFT of
simulated I and Q
response to a point
target.
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corrected I and Q data. The correction factors, as determined by equations
(10) and (12), are G = 1.501 V, δ = –3.56°, Vdci = –0.902 V, and Vdcq = 1.097 V.
These are in good agreement with the values modeled.

2.3 Error Analysis

We generated figures 5 to 8 using a Monte Carlo simulation of 50 data sets.
The correction factors for each data set were determined, and then the av-
erage value for each set of 50 correction factors was used to determine the
error for each point on the plots.

Because our technique depends upon the FFT as a narrow bandpass filter,
it is reasonable to expect the size of the FFT to affect the accuracy of the
correction factors. Figures 5 and 6 are plots showing the dependence of the
error in the predicted gain- and phase-correction factors, respectively, as a
function of SNR for three FFT sizes: 128, 512, and 2048. The accuracy of the
predicted values will also be affected if the peak response is not centered in
a bin of the FFT; this factor, commonly referred to as scalloping loss, can be
as great as 3.92 dB for data that are transformed with a rectangular win-
dow, while use of a Hamming window will reduce this loss to 1.78 dB.4
Figures 7 and 8 show the dependence of the error in the predicted gain and
phase correction factors as a function of the response passing through a
single range cell for the three FFT sizes. The error introduced by these scal-
loping losses is reduced further by the I and Q signals being the same ap-
parent frequency and, consequently, located in the same FFT bin. We can
realize a further improvement by applying the Hamming window func-
tion to the data, and padding the result to a larger vector size before
transforming.

Figure 5. Gain-
correction error as a
function of SNR.

4C. S. Lindquist, Adaptive and Digital Signal Processing with Digital Filtering Applications, vol. 2, Integrated Series
in Signal Processing and Filtering, Stewart and Sons, Miami (1989), p 133.
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Figure 7. Gain-
correction error as
peak traverses one
range cell.

Figure 6. Phase-
correction error as a
function of SNR.

5

2

1

0

–1

0 5

SNR (dB)

P
er

ce
nt

ag
e 

of
 e

rr
or

–2

–3

–4

–5
10 15 20 25 30 35 40 45 50 55 60

4

3

FFT = 128 FFT = 512

FFT = 2048

1.0

0.0

–0.5

0.0
Range cell

P
er

ce
nt

ag
e 

of
 e

rr
or

–1.0
0.2 0.4 0.6 0.8 1.0

0.5

FFT = 2048FFT = 512

FFT = 128



9

3. Conclusions
We present a method for correcting the I and Q imbalances of a wideband
radar that requires no internal phase calibration hardware, and uses only
data from an external target of opportunity (normally, an external target is
required for absolute calibration of the system). The technique relies upon
three FFT’s of a single data set to determine gain- and phase-correction fac-
tors within an error that depends upon the signal-to-noise ratio of the data.

Figure 8. Phase-
correction error as peak
traverses one range cell.
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